Learn how to make a sonobe unit in origami – and unlock a world of mathematical wonder


PTI, Jan 5, 2022, 11:58 AM IST

Source: The Conversation

Many of us could happily fold a paper crane, yet few feel confident solving an equation like x³ – 3 x² – x + 3 = 0, to find a value for x.

Both activities, however, share similar skills: precision, the ability to follow an algorithm, an intuition for shape, and a search for pattern and symmetry.

I’m a mathematician whose hobby is origami, and I love introducing people to mathematical ideas through crafts like paper folding. Any piece of origami will contain mathematical ideas and skills and can take you on a fascinating, creative journey.

The ‘building blocks of origami models As a geometer (a mathematician who studies geometry), my favorite technique is modular origami. That’s where you use several pieces of folded paper as “building blocks” to create a larger, often symmetrical structure.

The building blocks, called units, are typically straightforward to fold; the mathematical skill comes in assembling the larger structure and discovering the patterns within them.

Many modular origami patterns, although they may use different units, have a similar method of combining units into a bigger creation.

So, for a little effort you are rewarded with a vast number of models to explore.

My website Maths Craft Australia contains a range of modular origami patterns, as well as patterns for other crafts such as crochet, knitting and stitching.

They require no mathematical background but will take you in some fascinating mathematical directions.

Building 3D shapes from smaller 2D units In mathematics, the shapes with the most symmetry are called the Platonic solids. They’re named after the ancient Greek philosopher Plato (although they almost certainly predate him and have been discovered in ancient civilizations around the world).

The Platonic solids are 3D shapes made from regular 2D shapes (also known as regular polygons) where every side and angle is identical: equilateral triangles, squares, pentagons.

While there are infinitely many regular polygons, there are, surprisingly, only five Platonic solids: — the tetrahedron (four triangles) — the cube (six squares) — the octahedron (eight triangles) — the dodecahedron (12 pentagons), and — the icosahedron (20 triangles).

To build Platonic solids in origami, the best place to start is to master what’s known as the “sonobe unit”.

Into the rabbit hole Once you’ve mastered the basic structure of each 3D shape, you may find yourself (as others have done) pondering deeper mathematical questions.

Can you arrange the sonobe units so two units of the same colour never touch, if you only have three colours? Are larger symmetric shapes possible? (Answer: yes!) Are there relationships between the different 3D shapes? (For example, the icosahedron is basically built of triangles, but can you spot the pentagons lurking within? Or the triangles in the dodecahedron?) The one seemingly innocent question can easily lead to a mathematical rabbit hole.

Questions about colouring will lead you to the mathematics of graphs and networks (and big questions that remained unsolved for many centuries).

Questions about larger models will lead you to the Archimedean solids and the Johnson solids. These 3D shapes have a lot of symmetry, though not as much as the Platonic solids.

Then, for a truly mind-bending journey, you might land on the concept of higher-dimensional symmetric shapes.

Or perhaps your questions will lead you in the opposite direction.

Instead of using origami to explore new ideas in mathematics, some researchers have used mathematical frameworks to explore new ideas in origami.

Solving old problems in new ways Perhaps the most famous mathematical origami artist is the US-based former NASA physicist Robert Lang, who designs computer programs that generate crease patterns for fantastically complicated models.

His models include segmented tarantulas and ants, stags with twisted antlers, and soaring, feathered birds.

Robert Lang and others have also created crease patterns for use in new engineering contexts such as folding telescope lenses, airbags, and solar panels.

My final example of the power of origami goes back to the cubic equation I mentioned at the outset: x³ – 3 x² – x + 3 = 0 Cubic equations relate to some “impossible” mathematical problems, such as trisecting an angle (splitting an arbitrary angle into three equal angles). Or doubling a cube (which is finding a cube with double the volume of a given cube).

Famously, these problems cannot be solved using the classical methods of a straightedge (ruler without the markings) and compass.

In 1980, however, Japanese mathematician Hisashi Abe showed how to solve all these problems using origami.

I am excited to see where mathematics and origami will intersect in the future. Grab some paper today, make a few models and start your own journey of mathematical exploration.

Udayavani is now on Telegram. Click here to join our channel and stay updated with the latest news.

Top News

Drone strikes hit Moscow and Kyiv – in the growing world of drone warfare, anything goes when it comes to international law

Indian Overseas Congress denounces allegations relating to Rahul Gandhi’s US visit being ‘controlled by certain minority group’

There is need to have appropriate regulations on data safety and security, says Rahul Gandhi

Kannur: Coach of halted train catches fire

Daring heist: Thieves steal lorry loaded with Annabhagya rice

Dereliction of duty during assembly polls: DC suspends DDPU

Akash Ambani, wife Shloka welcome second child, a baby girl

Related Articles More

Plastic recycling is failing – here’s how the world must respond

Journey of old Parliament building since its inauguration in 1927 by Viceroy Lord Irwin

Sad that I can’t participate in party functions, says newly elected Speaker U T Khader

‘Sengol’ set to be installed in Parliament linked to Tamil Nadu: A peep into the past

Headaches after exercise: here’s why they happen – and how to prevent them

MUST WATCH

Tribe people in brhills

An accident between cars on National Highway 66, four injured

Natana Rangashaale | Udayavani

Jagadish shettar defeated Basavaraj bommai in 1994

Vinaya Kumar Sorake submission of nomination papers-Kapu


Latest Additions

Drone strikes hit Moscow and Kyiv – in the growing world of drone warfare, anything goes when it comes to international law

Indian Overseas Congress denounces allegations relating to Rahul Gandhi’s US visit being ‘controlled by certain minority group’

Eating junk food linked with reduced deep sleep quality: Study

There is need to have appropriate regulations on data safety and security, says Rahul Gandhi

Kannur: Coach of halted train catches fire